Beziehung zwischen Kc und Kp

$$Kc = c^{c}(C) * c^{d}(D) / (c^{a}(A) * c^{b}(B) \text{ für a} * A + b * B \leftrightarrow c * C + d * D$$

c=Konzentration der Stoffe

 $Kp=p^c(C)*p^d(D)/(p^a(A)*p^b(B))$ für $a*A+b*B \leftrightarrow c*C+d*D$ wenn alle beteiligten Stoffe gasförmig sind p Partialdruck (Teildruck) des betreffenden Gases

Herleitung

p*v=n*R*T Zustandsgleichung des idealen Gases p=n/v*R*T n/v=c in mol/l (mol pro Volumen) ist die Konzentration (mol pro Liter)

also p=c*R*T für ein bestimmtes Gas dann p(A)=c(A)*R*T

R=8,314472 J/(K*mol) (Joule pro Kelvin und mol),allgemeine Gaskonstante, wenn man in Pa (Pascal) und in m³ (Kubikmeter) rechnet nennt man auch R=Rm=**molare Gaskonstante** oder R=0,0831 bar/(K*mol) wenn man in bar und l (Liter) rechnet

ergibt $Kp = (c(C)*R*T)^c * (c(D)*R*T)^d / (c(A)*R*T)^a * c(B)*R*T)^b)$ Potenzgesetz $a^r * b^r = (a*b)^r$

 $Kp = c^{c}(C)*c^{d}(D)*(R*T)^{(c+d)}/(c^{a}(A)*c^{b}(B)*(R*T)^{(a+b)}$ Potenzgesetz $a^{r}/a^{s} = a^{(r-s)}$

 $Kp = (c^{c}(C) * c^{d}(D) / (c^{a}(A) * c^{b}(B)) * (R*T)^{(c+d-(a+b))} = Kc * (R*T)^{(c+d-a-b)}$

Endformel **Kp=Kc*(R*T)**^{Δn} **mit** Δn =**c**+**d**-**a**-**b** hier mit a*A+b*B \leftrightarrow c*C+d*D (Summenformel)